Write characteristics and uses of ${K_a}$ value.
The characteristics and uses of $\mathrm{K}_{a}$ value as under :
$(i)$ The value of $\mathrm{K}_{a}$ is larger, the stronger is the acid.
$(ii)$ $\mathrm{K}_{a}$ is a dimensionless quantity.
$(iii)$ $\left[\mathrm{H}^{+}\right]$of weak acid and $\mathrm{pH}$ calculate using of value of $\mathrm{K}_{a}$.
$(iv)$ Calculate the ionization degree $\alpha$ with the help of $K_{a}$ value.
$(v)$ $\mathrm{pK}_{a}$ is calculated by using the value of $\mathrm{K}_{a}$. $\mathrm{pK}_{a}=-\log \left(\mathrm{K}_{a}\right)$
If the $\mathrm{pK}_{a}$ value is more than the acid become less strong.
$\mathrm{K}_{a}=1 \times 10^{-1}$ | $1 \times 10^{-2}$ | $1 \times 10^{-3}$ |
$\mathrm{pK}_{a}=1$ | $2$ | $3$ |
${K_a}$ of $C{H_3}COOH$ is $1.76 \times {10^{ - 5}}$ at $298$ $K$ temperature. Calculate dissociation constant of its conjugate base.
Derive the equation of relation between weak base ionization constant ${K_b}$ and its conjugate acid ionization constant ${K_a}$
Ionisation constant of $CH_3COOH$ is $1.7 \times 10^{-5}$ and concentration of $H^+$ ions is $3.4 \times 10^{-4}$. Then find out initial concentration of $CH_3COOH$ Molecules
For a weak acid $HA,$ Ostwald's dilution law is represented by the equation
$50\ ml$ of $0.02\ M$ $NaHSO_4$ is mixed with $50$ $ml$ of $0.02\ M\ Na_2SO_4$. Calculate $pH$ of the resulting solution.$[pKa_2 (H_2SO_4) = 2]$