Write characteristics and uses of ${K_a}$ value.
The characteristics and uses of $\mathrm{K}_{a}$ value as under :
$(i)$ The value of $\mathrm{K}_{a}$ is larger, the stronger is the acid.
$(ii)$ $\mathrm{K}_{a}$ is a dimensionless quantity.
$(iii)$ $\left[\mathrm{H}^{+}\right]$of weak acid and $\mathrm{pH}$ calculate using of value of $\mathrm{K}_{a}$.
$(iv)$ Calculate the ionization degree $\alpha$ with the help of $K_{a}$ value.
$(v)$ $\mathrm{pK}_{a}$ is calculated by using the value of $\mathrm{K}_{a}$. $\mathrm{pK}_{a}=-\log \left(\mathrm{K}_{a}\right)$
If the $\mathrm{pK}_{a}$ value is more than the acid become less strong.
$\mathrm{K}_{a}=1 \times 10^{-1}$ | $1 \times 10^{-2}$ | $1 \times 10^{-3}$ |
$\mathrm{pK}_{a}=1$ | $2$ | $3$ |
Derive ${K_w} = {K_a} \times {K_b}$ and ${K_w} = p{K_a} \times p{K_b}$ for weak base $B$ and its conjugate acid ${B{H^ + }}$.
If $pK_a =\, -\,log K_a=4$ for a weak acid $HX$ and $K_a= C\alpha ^2$ then Van't Haff factor when $C = 0.01\,M$ is
Calculate the $pH$ of a $0.10 \,M$ ammonia solution. Calculate the pH after $50.0 \,mL$ of this solution is treated with $25.0 \,mL$ of $0.10 \,M$ $HCl$. The dissociation constant of ammonia, $K_{b}=1.77 \times 10^{-5}$
Write examples of weak acids and weak bases and give ionic equilibrium in its aqueous solution.
Find $pH$ of $5 \times 10^{-3}\, M$ $H_2CO_3$ solution having $10\%$ dissociation