Write difference between electrostatic and magnetics :
electrostatic | magnetics |
$(1)$ $\frac{1}{\epsilon_{0}}\left(\epsilon_{0}=\right.$ permittivity of vacuum $)$ | $(1)$ $\mu_{0}\left(\mu_{0}=\right.$ permeability of vacuum $)$ |
$(2)$Electric charge $q$ | $(2)$ Magnetic pole $\left(q_{m}\right)$ |
$(3)$Electric dipole moment $\vec{p}=(2 \vec{a})(q)$ | $(3)$ Magnetic dipole moment $\vec{m}=(2 \vec{l})\left(q_{m}\right)$ |
$(4)$Electric force between two charges $\mathrm{F}=\frac{\mu_{0}}{4 \pi} \frac{\left(q_{m 1}\right)\left(q_{m 2}\right)}{r^{2}}$ |
$(4)$ Magnetic force between two magnetic poles $\mathrm{F}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}$ |
$(5)$Electric field on the axis of electric dipole $\overrightarrow{\mathrm{E}}=\frac{2 \vec{p}}{4 \pi \epsilon_{0} r^{3}} \quad(r>>l)$ |
$(5)$ Magnetic field on the axis of bar magnet $\overrightarrow{\mathrm{B}}=\frac{\mu_{0}}{4 \pi} \frac{2 \vec{m}}{r^{3}}$ (For small magnet $r>>l$ ) |
$(6)$Electric field on equatorial line $\overrightarrow{\mathrm{E}}=\frac{-\vec{p}}{4 \pi \epsilon_{0} r^{3}} \quad(r>>l)$ |
$(6)$ Magnetic field on equatorial line $\overrightarrow{\mathrm{B}}=-\frac{\mu_{0}}{4 \pi} \frac{\vec{m}}{r^{3}}$ (For small magnet $r>>l$ ) |
$(7)$Torque $\vec{\tau}=\vec{p} \times \overrightarrow{\mathrm{E}}$ | $(7)$Torque $\vec{\tau}=\vec{m} \times \overrightarrow{\mathrm{B}}$ |
$(8)$Potential energy $\mathrm{U}=-\vec{p} \cdot \overrightarrow{\mathrm{E}}$ | $(8)$Potential energy $\mathrm{U}=-\vec{m} \cdot \overrightarrow{\mathrm{B}}$ |
$(9)$Work done $\mathrm{W}=\mathrm{P} \varepsilon\left[\cos \theta_{1}-\cos \theta_{2}\right]$ | $(9)$Work done $\mathrm{W}=m \mathrm{~B}\left[\cos \theta_{1}-\cos \theta_{2}\right]$ |
Write an expression of magnitude of magnetic field at point lies on equatorial line of a bar magnet.
Verify the Ampere’s law for magnetic field of a point dipole of dipole moment ${\rm{\vec M = M\hat k}}$. Take $\mathrm{C}$ as the closed curve running clockwise along : the $\mathrm{z}$ - axis from $\mathrm{z} = \mathrm{a} \,>\, 0$ to $\mathrm{z = R}$;
Two magnetic dipoles $X$ and $Y$ are placed at a separation $d$, with their axes perpendicular to each other. The dipole moment of $Y$ is twice that of $X$. A particle of charge $q$ is passing through their mid-point $P$, at angle $\theta = 45^o$ with the horizontal line as shown in the figure. What would be the magnitude of force on the particle at that instant ? ($d$ is much larger than the dimensions of the dipole)
What is the magnitude of the equatorial and axial fields due to a bar magnet of length $5.0 \;cm$ at a distance of $50\; cm$ from its mid-point? The magnetic moment of the bar magnet is $0.40\; A m ^{2}$.
A small current element of length $d \ell$ and carrying current is placed at $(1,1,0)$ and is carrying current in ' $+ z$ ' direction. If magnetic field at origin be $\overrightarrow{ B }_1$ and at point $(2,2,0)$ be $\overrightarrow{ B }_2$ then