5.Magnetism and Matter
medium

Write difference between electrostatic and magnetics :

Option A
Option B
Option C
Option D

Solution

electrostatic magnetics
$(1)$ $\frac{1}{\epsilon_{0}}\left(\epsilon_{0}=\right.$ permittivity of vacuum $)$ $(1)$ $\mu_{0}\left(\mu_{0}=\right.$ permeability of vacuum $)$
$(2)$Electric charge $q$ $(2)$ Magnetic pole $\left(q_{m}\right)$
$(3)$Electric dipole moment $\vec{p}=(2 \vec{a})(q)$ $(3)$ Magnetic dipole moment $\vec{m}=(2 \vec{l})\left(q_{m}\right)$

$(4)$Electric force between two charges

$\mathrm{F}=\frac{\mu_{0}}{4 \pi} \frac{\left(q_{m 1}\right)\left(q_{m 2}\right)}{r^{2}}$

$(4)$ Magnetic force between two magnetic poles $\mathrm{F}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}$

$(5)$Electric field on the axis of electric dipole

$\overrightarrow{\mathrm{E}}=\frac{2 \vec{p}}{4 \pi \epsilon_{0} r^{3}} \quad(r>>l)$

$(5)$ Magnetic field on the axis of bar magnet $\overrightarrow{\mathrm{B}}=\frac{\mu_{0}}{4 \pi} \frac{2 \vec{m}}{r^{3}}$ (For small magnet $r>>l$ ) 

$(6)$Electric field on equatorial line

$\overrightarrow{\mathrm{E}}=\frac{-\vec{p}}{4 \pi \epsilon_{0} r^{3}} \quad(r>>l)$

$(6)$ Magnetic field on equatorial line $\overrightarrow{\mathrm{B}}=-\frac{\mu_{0}}{4 \pi} \frac{\vec{m}}{r^{3}}$ (For small magnet $r>>l$ )
$(7)$Torque $\vec{\tau}=\vec{p} \times \overrightarrow{\mathrm{E}}$ $(7)$Torque $\vec{\tau}=\vec{m} \times \overrightarrow{\mathrm{B}}$
$(8)$Potential energy $\mathrm{U}=-\vec{p} \cdot \overrightarrow{\mathrm{E}}$ $(8)$Potential energy $\mathrm{U}=-\vec{m} \cdot \overrightarrow{\mathrm{B}}$
$(9)$Work done $\mathrm{W}=\mathrm{P} \varepsilon\left[\cos \theta_{1}-\cos \theta_{2}\right]$ $(9)$Work done $\mathrm{W}=m \mathrm{~B}\left[\cos \theta_{1}-\cos \theta_{2}\right]$
Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.