આપેલ શ્રેણીનાં પ્રથમ પાંચ પદ શોધો અને સંબંધિત શ્રેઢી મેળવો : $a_{1}=3, a_{n}=3 a_{n-1}+2$ માટે $n\,>\,1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$a_{1}=3, a_{n}=3 a_{n-1}+2$ for $n\,>\,1$

$\Rightarrow a_{2}=3 a_{1}+2=3(3)+2=11$

$a_{3}=3 a_{2}+2=3(11)+2=35$

$a_{4}=3 a_{3}+2=3(35)+2=107$

$a_{5}=3 a_{4}+2=3(107)+2=323$

Hence, the first five terms of the sequence are $3,11,35,107$ and $323$

The corresponding series is $3+11+35+107+323+\ldots$

Similar Questions

અહી $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots$ એ સમાંતર શ્રેણીમાં છે. જો  $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$ હોય તો  $\frac{a_{11}}{a_{10}}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

સમાંતર શ્રેણીના પ્રથમ ચાર પદોનો સરવાળો $56 $ થાય અને તેના અંતિમ ચાર પદોનો સરવાળો $112$ થાય છે. જો તેનું પ્રથમ પદ $11$  હોય, તો તેના પદોની સંખ્યા કેટલી હશે ?

$3$ અને $24$ વચ્ચે $6$ સંખ્યાઓ ઉમેરો કે જેથી બનતી શ્રેણી સમાંતર શ્રેણી બને. 

અહી $x_n, y_n, z_n, w_n$ એ ધન પદો ધરાવતી ભિન્ન સમાંતર શ્રેણીના $n^{th}$ પદો છે જો $x_4 + y_4 + z_4 + w_4 = 8$ અને $x_{10} + y_{10} + z_{10} + w_{10} = 20,$ હોય તો  $x_{20}.y_{20}.z_{20}.w_{20}$ ની મહત્તમ કિમત મેળવો 

જો શ્રેણીના $n $ પદોનો સરવાળો $3n^2 + 4n$ ; થાય, તો તે કઈ શ્રેણી હોય ?