આપેલ શ્રેણીનાં પ્રથમ પાંચ પદ શોધો અને સંબંધિત શ્રેઢી મેળવો : $a_{1}=3, a_{n}=3 a_{n-1}+2$ માટે $n\,>\,1$
$a_{1}=3, a_{n}=3 a_{n-1}+2$ for $n\,>\,1$
$\Rightarrow a_{2}=3 a_{1}+2=3(3)+2=11$
$a_{3}=3 a_{2}+2=3(11)+2=35$
$a_{4}=3 a_{3}+2=3(35)+2=107$
$a_{5}=3 a_{4}+2=3(107)+2=323$
Hence, the first five terms of the sequence are $3,11,35,107$ and $323$
The corresponding series is $3+11+35+107+323+\ldots$
સમાંતર શ્રેણીનાં પ્રથમ ચાર પદોનો સરવાળો $56$ છે. તેનાં છેલ્લાં ચાર પદોનો સરવાળો $112$ છે. તેનું પ્રથમ પદ $11$ છે, તો પદોની સંખ્યા શોધો.
પ્રત્યેક પ્રાકૃતિક સંખ્યા $n$ માટે બે સમાંતર શ્રેણીનાં પ્રથમ $n$ પદોના સરવાળાનો ગુણોત્તર $5 n+4: 9 n+6 .$ છે. તેમનાં $18$ માં પદનો ગુણોત્તર મેળવો.
જો $S_n$ અને $s_n$ એ $n$ પદો ધરાવતી બે ભિન્ન સમાંતર શ્રેણી છે કે જેના માટે $\frac{{{s_n}}}{{{S_n}}} = \frac{{3n - 13}}{{7n + 13}}$ હોય તો $\frac{{{s_n}}}{{{S_{2n}}}}$ ની કિમત મેળવો
જો એક બહુકોણના બધા આંતરિક ખૂણાઓ સમાંતર શ્રેણીમાં હોય અને તેમની વચ્ચેનો સામાન્ય તફાવત $10^o$ હોય તો ન્યૂનતમ ખૂણો મેળવો
ધારો કે $\mathrm{S}_{\mathrm{n}}$ સમાંતર શ્રેણીનાં પહેલા $\mathrm{n}$ પદોનો સરવાળો દર્શાવે છે. જો $\mathrm{S}_{20}=790$ અને $\mathrm{S}_{10}=145$ હોય, તો $\mathrm{S}_{15}-\mathrm{S}_5=$....................