Let ${T_r}$ be the ${r^{th}}$ term of an $A.P.$ for $r = 1,\;2,\;3,....$. If for some positive integers $m,\;n$ we have ${T_m} = \frac{1}{n}$ and ${T_n} = \frac{1}{m}$, then ${T_{mn}}$ equals
The solution of ${\log _{\sqrt 3 }}x + {\log _{\sqrt[4]{3}}}x + {\log _{\sqrt[6]{3}}}x + ......... + {\log _{\sqrt[{16}]{3}}}x = 36$ is
The interior angles of a polygon are in $A.P.$ If the smallest angle be ${120^o}$ and the common difference be $5^o$, then the number of sides is
The sum of integers from $1$ to $100$ that are divisible by $2$ or $5$ is
If the first term of an $A.P.$ is $3$ and the sum of its first $25$ terms is equal to the sum of its next $15$ terms, then the common difference of this $A.P.$ is :