Let ${S_n}$ denotes the sum of $n$ terms of an $A.P.$ If ${S_{2n}} = 3{S_n}$, then ratio $\frac{{{S_{3n}}}}{{{S_n}}} = $
$4$
$6$
$8$
$10$
If $x=\sum \limits_{n=0}^{\infty} a^{n}, y=\sum\limits_{n=0}^{\infty} b^{n}, z=\sum\limits_{n=0}^{\infty} c^{n}$, where $a , b , c$ are in $A.P.$ and $|a| < 1,|b| < 1,|c| < 1$, $abc \neq 0$, then
Find the sum of all two digit numbers which when divided by $4,$ yields $1$ as remainder.
The $20^{\text {th }}$ term from the end of the progression $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots .,-129 \frac{1}{4}$ is :-
Find the sum of all natural numbers lying between $100$ and $1000,$ which are multiples of $5 .$
If the sum of first $n$ terms of an $A.P.$ is $c n^2$, then the sum of squares of these $n$ terms is