પ્રથમ ત્રણ પદો લખો : $a_{n}=2 n+5$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here $a_{n}=2 n+5$

Substituting $ n =1,2,3, $ we get 

$a_{1} =2(1)+5=7, a_{2}=9, a_{3}=11$

Therefore, the required terms are $7,9$ and $11 .$

Similar Questions

જો $a, b, c, d, e$ સમાંતર શ્રેણીમાં અને હોય, તો $a - 4b + 6c - 4d + e$ નું મૂલ્ય કેટલું થાય ?

જો કોઈ સમાંતર શ્રેણી માટે $p^{th}$ અને $q^{th}$ પદ માટેનો સમાંતર મધ્યક તે જ શ્રેણીના $r^{th}$ અને $s^{th}$ ના સમાંતર મધ્યક જેટલો થાય તો $p + q$ ની કિમત મેળવો. 

  • [AIEEE 2012]

વધતી સમાંતર શ્રેણીમાં ચાર જુદા જુદા પૂર્ણાકો લો. તેમાંનો એક પૂર્ણાક બાકીના ત્રણ પૂર્ણાકોના વર્ગના સરવાળા બરાબર છે. તો બધી જ સંખ્યાઓનો ગુણાકાર કેટલો થાય ?

એક માણસ $4500$ ચલણી નોટોની ગણતરી કરે છે. ધારો કે $a_n $ નોટોની સંખ્યા દર્શાવે છે. તે $n$ મિનીટમાં ગણતરી કરે છે. જો $a_1$ = $a_2$ = … = $a_1$0 $= 150$ અને $a_{10}, a_{11},.....$  સમાંતર શ્રેણીના સામાન્ય તફાવત $-2$  સાથે હોય, તો તેના દ્વારા બધી નોટોની ગણતરી કરવા માટે લાગતો સમય કેટલા .............. મિનિટ હશે ?

અહી $a_{1}, a_{2}, \ldots \ldots, a_{21}$ એ સમાંતર શ્રેણીમાં છે કે જેથી $\sum_{n=1}^{20} \frac{1}{a_{n} a_{n+1}}=\frac{4}{9}$ છે. જો શ્રેણીનાં પદોનો સરવાળો $189,$ હોય તો  $a_{6} \mathrm{a}_{16}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]