उस अतिपरवलय का समीकरण ज्ञात कीजिए जिसकी नाभियाँ $(0,±12)$ और नाभिलंब जीवा की लंबाई $36$ है।
since foci are $(0,\,±12)$ , it follows that $c=12$
Length of the latus rectum $=\frac{2 b^{2}}{a}=36$ or $b^{2}=18 a$
Therefore $c^{2}=a^{2}+b^{2}$; gives
$144=a^{2}+18 a$
i.e. $a^{2}+18 a-144=0$
So $a=-24,6$
since $a$ cannot be negative, we take $a=6$ and so $b^{2}=108$.
Therefore, the equation of the required hyperbola is $\frac{y^{2}}{36}-\frac{x^{2}}{108}=1,$ i.e., $3 y^{2}-x^{2}=108$
अतिपरवलयों के शीर्षों, नाभियों के निर्देशांक, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$49 y^{2}-16 x^{2}=784$
यदि सरल रेखा $x\cos \alpha + y\sin \alpha = p$ अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ की स्पर्श रेखा हो, तब
अतिपरवलय $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1$ के बिन्दु $( - 4,\;0)$ पर अभिलम्ब का समीकरण होगा
रेखाओं $(\sqrt{3}) kx + ky -4 \sqrt{3}=0$ तथा $\sqrt{3} x - y -4(\sqrt{3}) k =0$ के प्रतिच्छेदन बिंदु का बिंदुपथ एक शांकव है, जिसकी उत्केन्द्रता है .......... |
माना अतिपरवलय $\mathrm{H}$ की नाभियाँ $\mathrm{A}(1 \pm \sqrt{2}, 0)$ तथा उत्केन्द्रता $\sqrt{2}$ है। तो $\mathrm{H}$ की नाभिलंब जीवा की लंबाई है :