$A$ અને $B$ બે ઘટનાઓ એવા પ્રકારની છે કે $P(A) = 0.54, P(B) = 0.69$ અને$P(A \cap B)=0.35$ $P \left( A ^{\prime} \cap B ^{\prime}\right)$ શોધો.
It is given that $P ( A )=0.54$, $P ( B )=0.69$, $P (A \cap B)=0.35$
$A^{\prime} \cap B^{\prime}=(A \cup B)^{\prime}$ [by De Morgan's law]
$\therefore P \left(A^{\prime} \cap B^{\prime}\right)$ $= P (A \cup B)^{\prime}=1- P (A \cup B)=1-0.88=0.12$
એક ધોરણના $60$ વિદ્યાર્થીઓમાંથી $NCC$ ને $30, NSS$ ને $32$ અને બંનેને $24$ વિદ્યાર્થીઓએ પસંદ કર્યા છે. જો આ બધામાંથી એક વિદ્યાર્થી યાદેચ્છિક રીતે પસંદ કરવામાં આવે, તો આપેલ ઘટનાઓની સંભાવના શોધો.વિદ્યાર્થીએ $NCC$ અથવા $NSS$ ને પસંદ કર્યા છે.
જો વિર્ધાથી ગણિત,ભૌતિક વિજ્ઞાન અને રસાયણ વિજ્ઞાનમાં પાસ થાય તેની સંભાવના અનુક્રમે $m, p$ અને $c$ છે.આ વિષયમાંથી,વિર્ધાથી ઓછામાં ઓછા એક વિષયમાં પાસ થાય તેની શક્યતા $75\%$ છે,ઓછામાં ઓછા બે વિષયમાં પાસ થાય તેની શક્યતા $50\%$, ફક્ત બે વિષયમાં પાસ થાય તેની શક્યતા $40\%$ છે.તો નીચેના પૈકી કયો સંબંધ સત્ય બને.
એક શાળાના ધોરણ $XI$ નાં $40 \%$ વિદ્યાર્થી ગણિત ભણે છે અને $30 \%$ જીવવિજ્ઞાન ભણે છે. વર્ગના $10 \%$ વિદ્યાર્થી ગણિત અને જીવવિજ્ઞાન બંને ભણે છે. આ ધોરણનો એક વિદ્યાર્થી યાદચ્છિક રીતે પસંદ કરવામાં આવે છે, તો આ વિદ્યાર્થી ગણિત અથવા જીવવિજ્ઞાન ભણતો હોય તેની સંભાવના શોધો.
ઘટનાઓ $E$ અને $F$ એવા પ્રકારની છે કે $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2}$ અને $P(E$ અને $F )=\frac{1}{8},$ તો $P(E$ નહિ $F$ નહિ) શોધો.
નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$\frac {1}{3}$ | $\frac {1}{5}$ | $\frac {1}{15}$ | ........ |