$9 \sec ^{2} A-9 \tan ^{2} A=........$
$9$
$1$
$8$
$0$
$9 \sec ^{2} A-9 \tan ^{2} A$
$=9\left(\sec ^{2} A-\tan ^{2} A\right)$
$=9(1)\left[A s \sec ^{2} A-\tan ^{2} A=1\right]$
$=9$
જેમાં $\angle C$ કાટખૂણો હોય, તેવો કોઈ $\triangle ACB$ લો. $AB = 29$ એકમ, $BC = 21$ એકમ અને $\angle ABC =\theta$ (જુઓ આકૃતિ) હોય, તો નિમ્નલિખિત મૂલ્ય શોધો:
$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$
$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$
સાબિત કરો :
$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$
$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$
નીચેના વિધાનો સત્ય છે કે નહિ તે કારણ આપી જણાવો :
$(i)$ $\tan$ $A$ નું મૂલ્ય હંમેશાં $1$ કરતાં ઓછું હોય છે.
$(ii)$ $A$ માપવાળા કોઈક ખૂણા માટે $\sec A=\frac{12}{5}$ સત્ય છે.
કિંમત શોધો :
$\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$
નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિતકરો :
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
Confusing about what to choose? Our team will schedule a demo shortly.