સાબિત કરો :
$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$
$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$
(i) $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}$
$=\tan \left(90^{\circ}-42^{\circ}\right) \tan \left(90^{\circ}-67^{\circ}\right) \tan 42^{\circ} \tan 67^{\circ}$
$=\cot 42^{*} \cot 67^{*} \tan 42^{*} \tan 67^{\circ}$
$=\left(\cot 42^{\circ} \tan 42^{\circ}\right)\left(\cot 67^{*} \tan 67^{\circ}\right)$
$=(1)(1)$
$=1$
(ii) $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}$
$=\cos \left(90^{\circ}-52^{\circ}\right) \cos \left(90^{\circ}-38^{\circ}\right)-\sin 38^{\circ} \sin 52^{\circ}$
$=\sin 52^{*} \sin 38^{\circ}-\sin 38^{\circ} \sin 52^{*}$
$=0$
જો $4A$ એ લઘુકોણનું માપ હોય તથા $\sec 4 A =\operatorname{cosec}\left( A -20^{\circ}\right)$ હોય, તો $A$ ની કિંમત શોધો.
$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$
$\cot 85^{\circ}+\cos 75^{\circ}$ ને $0^{\circ}$ અને $45^{\circ}$ વચ્ચેના માપવાળા ત્રિકોણમિતીય ગુણોત્તરનો ઉપયોગ કરીને દર્શાવો.
નિત્યસમ $\operatorname{cosec}^{2} A=1+\cot ^{2} A$ નો ઉપયોગ કરીને $\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A$ સાબિત કરો.
કિંમત શોધો :
$\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$