- Home
- Standard 10
- Mathematics
જેમાં $\angle C$ કાટખૂણો હોય, તેવો કોઈ $\triangle ACB$ લો. $AB = 29$ એકમ, $BC = 21$ એકમ અને $\angle ABC =\theta$ (જુઓ આકૃતિ) હોય, તો નિમ્નલિખિત મૂલ્ય શોધો:
$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$
$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$

Solution
$\Delta ACB ,$માં,
$AC=\sqrt{ AB ^{2}- BC ^{2}}=\sqrt{(29)^{2}-(21)^{2}}$
$=\sqrt{(29-21)(29+21)}=\sqrt{(8)(50)}=\sqrt{400}=20$ એકમ
તેથી, $\sin \theta=\frac{A C}{A B}=\frac{20}{29}, \cos \theta=\frac{B C}{A B}=\frac{21}{29}$
હવે,
$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta=\left(\frac{20}{29}\right)^{2}+\left(\frac{21}{29}\right)^{2}=\frac{20^{2}+21^{2}}{29^{2}}=\frac{400+441}{841}=1$
અને
$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta=\left(\frac{21}{29}\right)^{2}-\left(\frac{20}{29}\right)^{2}=\frac{(21+20)(21-20)}{29^{2}}=\frac{41}{841}$