Basic of Logarithms
medium

$\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = $

A

${{n(n + 1)} \over 2}{\log _a}2$

B

${{n(n + 1)} \over 2}{\log _2}a$

C

${{{{(n + 1)}^2}{n^2}} \over 4}{\log _2}a$

D

એકપણ નહી.

Solution

(a) $\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = \sum\limits_{n = 1}^n {{{\log }_a}{2^n}} = x = 1$

$= {\log _a}2.{{n(n + 1)} \over 2} = {{n(n + 1)} \over 2}{\log _a}2$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.