$\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = $
${{n(n + 1)} \over 2}{\log _a}2$
${{n(n + 1)} \over 2}{\log _2}a$
${{{{(n + 1)}^2}{n^2}} \over 4}{\log _2}a$
એકપણ નહી.
${\log _2}7$ એ . . . . થાય.
${81^{(1/{{\log }_5}3)}} + {27^{{{\log }_{_9}}36}} + {3^{4/{{\log }_{_7}}9}} = . . . .$
જો ${a^2} + 4{b^2} = 12ab $ તો $\log (a + 2b)= . . .$ .
ધારોકે $a,b,c$ એ એવી ત્રણ ભિન્ન વાસ્તવિક સંખ્યાઓ છે કે જેથી $(2 a)^{\log _e a}=(b c)^{\log _e b}$ અને $b^{\log _e 2}=a^{\log _e c}$ તો $6 a+5 b c=..........$
સમીકરણ $log_7(2^x -1) + log_7(2^x -7) = 1$ ના ઉકેલોની સંખ્યા મેળવો.