यदि $x = 1 + a + {a^2} + ....\infty ,\,(a < 1)$ $y = 1 + b + {b^2}.......\infty ,\,(b < 1)$
तब $1 + ab + {a^2}{b^2} + ..........\infty $ का मान होगा
$\frac{{xy}}{{x + y - 1}}$
$\frac{{xy}}{{x + y + 1}}$
$\frac{{xy}}{{x - y - 1}}$
$\frac{{xy}}{{x - y + 1}}$
श्रेणी $(32)(32) 1/6(32)1/36 ...... $ अनन्त पदों तक का गुणनफल है
गुणोत्तर श्रेणी के कुछ पदों का योग $315$ है, उसका प्रथम पद तथा सार्व अनुपात क्रमशः $5$ तथा $2$ हैं। अंतिम पद तथा पदों की संख्या ज्ञात कीजिए।
दिखाइए कि अनुक्रम $a, a r, a r^{2}, \ldots a r^{n-1}$ तथा $A , AR , AR ^{2}, \ldots AR ^{n-1}$ के संगत पदों के गुणनफल से बना अनुक्रम गुणोत्तर श्रेणी होती है तथा सार्व अनुपात ज्ञात कीजिए।
ऐसी $3$ संख्याएँ ज्ञात कीजिए जिनको $1$ तथा $256$ के बीच रखने पर प्राप्त अनुक्रम एक गुणोत्तर श्रेणी बन जाए।
माना $a_1, a_2, a_3, \ldots$ वर्धमान धनात्मक संख्याओं की एक $G.P.$ है। माना इसके छठे और आठवें पदों का योग $2$ है तथा इसके तीसरे और पाँचवें पदों का गुणनफल $\frac{1}{9}$ है। तो $6\left(a_2+a_4\right)\left(a_4+a_6\right)$ बराबर है।