यदि $\alpha ,\beta $ समीकरण ${x^2} - ax + b = 0$ के मूल हों तथा यदि ${\alpha ^n} + {\beta ^n} = {V_n}$ हों, तो     

  • A

    ${V_{n + 1}} = a{V_n} + b{V_{n - 1}}$

  • B

    ${V_{n + 1}} = a{V_n} + a{V_{n - 1}}$

  • C

    ${V_{n + 1}} = a{V_n} - b{V_{n - 1}}$

  • D

    ${V_{n + 1}} = a{V_{n - 1}} - b{V_n}$

Similar Questions

माना द्विघात समीकरण  $$ \begin{aligned} x ^{2} \sin \theta- x (\sin \theta \cos \theta+1) &+\cos \theta \\ =& 0\left(0 < \theta < 45^{\circ}\right) \end{aligned} $$ के मूल $\alpha$ तथा $\beta(\alpha<\beta)$ हैं, तो $\sum_{ n =0}^{\infty}\left(\alpha^{ n }+\frac{(-1)^{ n }}{\beta^{ n }}\right)$ बराबर है

  • [JEE MAIN 2019]

यदि $(x + 1)$ व्यंजक ${x^4} - (p - 3){x^3} - (3p - 5){x^2} + (2p - 7)x + 6$

का एक गुणनखण्ड हो, तो $p = $

  • [IIT 1975]

समीकरण $|x{|^2}$-$3|x| + 2 = 0$ के वास्तविक हलों की संख्या है

  • [AIEEE 2003]

यदि $x$ वास्तविक है, तो व्यंजक $\frac{{{x^2} + 14x + 9}}{{{x^2} + 2x + 3}}$ के अधिकतम एवं न्यूनतम मान होंगे    

निम्नलिखित गुणों वाली एक तीन अंकों वाली संख्या पर विचार करे :

$I$. यदि इसके इकाई $(unit)$ और दहाई $(tens)$ अंकों को आपस में बदल दिया जाए तब संख्या $36$ से बढ़ जाएगी;

$II$. यदि इसके इकाई और सीवें $(hundredth)$ अंकों को बदल दिया जाए तो संख्या $198$ से घट जाएगी;

अब मान ले कि दहाई अंक तथा सौवें अंक को आपस में अदल - बदल दिया जाए, तो संख्या

  • [KVPY 2017]