Gujarati
4-2.Quadratic Equations and Inequations
medium

यदि $\alpha ,\beta $ समीकरण ${x^2} - ax + b = 0$ के मूल हों तथा यदि ${\alpha ^n} + {\beta ^n} = {V_n}$ हों, तो     

A

${V_{n + 1}} = a{V_n} + b{V_{n - 1}}$

B

${V_{n + 1}} = a{V_n} + a{V_{n - 1}}$

C

${V_{n + 1}} = a{V_n} - b{V_{n - 1}}$

D

${V_{n + 1}} = a{V_{n - 1}} - b{V_n}$

Solution

${x^2} – ax + b = 0$ को ${x^{n – 1}}$ से गुणा करने पर

${x^{n + 1}} – a{x^n} + b{x^{n – 1}} = 0$…..$(i)$

${x^2} – ax + b = 0$  के मूल $\alpha ,\beta $ हैं। अत: ये (i) को संतुष्ट करेंगे।

और ${\alpha ^{n + 1}} – a{\alpha ^n} + b{\alpha ^{n – 1}} = 0$…..$(ii)$

${\beta ^{n + 1}} – a{\beta ^n} + b{\beta ^{n – 1}} = 0$…..$(iii)$

$(ii)$ व $(iii)$ को जोड़ने पर

$({\alpha ^{n + 1}} + {\beta ^{n + 1}}) – a({\alpha ^n} + {\beta ^n}) + b({\alpha ^{n – 1}} + {\beta ^{n – 1}}) = 0$

या    ${V_{n + 1}} – a{V_n} + b{V_{n – 1}} = 0$

या   ${V_{n + 1}} = a{V_n} – b{V_{n – 1}} = 0$(दिया है ${\alpha ^n} + {\beta ^n} = {V_n}$)

ट्रिक : $n = 0$, $1,\,\,2$ रखने पर

${V_0} = {\alpha ^0} + {\beta ^0} = 2$, ${V_1} = \alpha  + \beta  = a$,

 ${\alpha ^2} + {\beta ^2} = {V_2} = {a^2} – 2b$

विकल्प $(c) ⇒ {V_2} = a{V_1} – b{V_0} = {a^2} – 2b$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.