${(a + 2x)^n}$ ના વિસ્તરણમાં ${r^{th}}$ મું પદ મેળવો.
$\frac{{n(n + 1)....(n - r + 1)}}{{r!}}{a^{n - r + 1}}{(2x)^r}$
$\frac{{n(n - 1)....(n - r + 2)}}{{(r - 1)\,!}}{a^{n - r + 1}}{(2x)^{r - 1}}$
$\frac{{n(n + 1)....(n - r)}}{{(r + 1)!}}{a^{n - r}}{(x)^r}$
એકપણ નહીં.
આપેલ સમીકરણ $(x^{1/3} - x^{-1/2})^{15}$ ના વિસ્તરણમાં જે પદમાં $x$ ન હોય તે પદ $5\, m$ જ્યાં $m \in N$, હોય તો $m $ ની કિમત મેળવો
જો $n$ એ ધન પૂર્ણાંક હોય , તો ${(1 + x)^n}$ ના વિસ્તરણમાં મહતમ પદને મહતમ સહગુણક હોય તો . . . .
$\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}$ ના વિસ્તરણમાં અચળપદ મેળવો.
દ્વિપદી પ્રમેયનો ઉપયોગ કરી, $(1+2 x)^{6}(1-x)^{7}$ ના ગુણાકારમાં $x^{5}$ નો સહગુણક શોધો.
${(1 + x)^{2n}}$ ના વિસ્તરણમાં મહતમ પદને મહતમ સહગુણક હોય તો $x$ ની કિમતોનો અંતરાલ મેળવો.