7.Binomial Theorem
hard

माना $\left(\mathrm{a}+\mathrm{bx}+\mathrm{cx}^2\right)^{10}=\sum_{\mathrm{i}=0}^{20} \mathrm{p}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}, \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{N}$ है। यदि $\mathrm{p}_1=20$ तथा $\mathrm{p}_2=210$ हैं, तो $2(\mathrm{a}+\mathrm{b}+\mathrm{c})$ बराबर है :

A

$8$

B

$12$

C

$15$

D

$6$

(JEE MAIN-2023)

Solution

$\left(a+b x+c x^2\right)^{10}=\sum_{i=0}^{20} p_i x^i$

Coefficient of $x^1=20$

$20=\frac{10 !}{9 ! 1 !} \times a^9 \times b^1$

$a^9 . b =2$

$a=1, b=2$

Coefficient of $x ^2=210$

$210=\frac{10 !}{9 ! 1 !} \times a^9 \times c^1+\frac{10 !}{8 ! 2 !} \times a^8 b^2$

$210=10 . c+45 \times 4$

$10 c=30$

$c=3$

$2(a+b=c)=12$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.