7.Binomial Theorem
medium

$\frac{1}{{1!(n - 1)\,!}} + \frac{1}{{3!(n - 3)!}} + \frac{1}{{5!(n - 5)!}} + .... = $

A

$\frac{{{2^n}}}{{n!}}$; for all even values of $n$

B

$\frac{{{2^{n - 1}}}}{{n!}}$; for all values of $n$ i.e., all even odd values

C

$0$

D

None of these

Solution

(b) Multiplying each term by $n!$ the question reduces to

$\frac{{n!}}{{1!(n – 1)!}} + \frac{1}{{3!}}.\frac{{n!}}{{(n – 3)\,!}} + \frac{1}{{5!}}.\frac{{n!}}{{(n – 5)!}} + ….$

$ = {\,^n}{C_1} + {\,^n}{C_3} + {\,^n}{C_5} + …. = {2^{n – 1}}$.

Thus $\frac{1}{{1!(n – 1)!}} + \frac{1}{{3!(n – 3)!}} + \frac{1}{{5!(n – 5)!}} + ….$$ = \frac{1}{{n!}}{2^{n – 1}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.