$\frac{1}{{1!(n - 1)\,!}} + \frac{1}{{3!(n - 3)!}} + \frac{1}{{5!(n - 5)!}} + .... = $
$\frac{{{2^n}}}{{n!}}$; $n$ ની દરેક યુગ્મ કિમત માટે
$\frac{{{2^{n - 1}}}}{{n!}}$; $n$ ની દરેક કિમત માટે
$0$
એકપણ નહિ.
પ્રાકૃતિક સંખ્યા $m,n$ માટે, ${\left( {1 - y} \right)^m}{\left( {1 + y} \right)^n} = 1 + {a_1}y + {a_2}{y^2} + \ldots \;$માટે $a_1= a_2=10,$ તો $(m,n)$ =______.
${(x + y)^n}$ વિસ્તરણમાં સહગુણકોનો સરવાળો $4096$ છે , તો વિસ્તરણમાં મહતમ સહગુણક મેળવો.
જો ${C_0},{C_1},{C_2},.......,{C_n}$ એ દ્રીપદી સહગુણક છે , તો $2.{C_1} + {2^3}.{C_3} + {2^5}.{C_5} + ....$ = . . .
$4 \{^nC_1 + 4 . ^nC_2 + 4^2 . ^nC_3 + ...... + 4^{n - 1}\}$ ની કિમત મેળવો
$^n{C_1}\sum\limits_{r = 0}^1 {^1{C_r}} { + ^n}{C_2}\left( {\sum\limits_{r = 0}^2 {^2{C_r}} } \right){ + ^n}{C_3}\left( {\sum\limits_{r = 0}^3 {^3{C_r}} } \right) + ......{ + ^n}{C_n}\left( {\sum\limits_{r = 0}^n {^n{C_r}} } \right)$ ની કિમત મેળવો