${C_0} - {C_1} + {C_2} - {C_3} + ..... + {( - 1)^n}{C_n}$ बराबर होगा
${2^n}$
${2^n} - 1$
$0$
${2^{n - 1}}$
$(1-2 \sqrt{x})^{50}$ के द्विपद प्रसार में $x$ की पूर्णांकीय घातों के गुणांकों का योग है
${(1 + x)^5}$ के विस्तार में पदों के गुणांकों का योगफल होगा
${(1 + x + {x^2})^n}$ के विस्तार में गुणांकों का योग होगा
यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^n},$ तो $C_0^2 + C_1^2 + C_2^2 + C_3^2 + ...... + C_n^2$ =
यदि $1+\left(2+{ }^{49} C _1+{ }^{49} C _2+\ldots \ldots+{ }^{49} C _{49}\right)\left({ }^{50} C _2+\right.$ $\left.{ }^{50} C _4+\ldots . .+{ }^{50} C _{50}\right)=2^{ n } . m$ है, जहाँ $m$ एक विषम संख्या है, तो $n + m$ बराबर है $..........$