7.Binomial Theorem
hard

यदि ${(x + a)^n},$ के विस्तार में विषम पदों का योग $A$ तथा सम पदों का योग $B$ हो, तो   

A

$AB = \frac{1}{4}{(x - a)^{2n}} - {(x + a)^{2n}}$

B

$2AB = {(x + a)^{2n}} - {(x - a)^{2n}}$

C

$4AB = {(x + a)^{2n}} - {(x - a)^{2n}}$

D

इनमें से कोई नहीं

Solution

${(x + a)^n} = {\,^n}{C_0}{x^n} + {^n}{C_1}{x^{n – 1}}a + {\,^n}{C_2}{x^{n – 2}}{a^2} + {\,^n}{C_3}{x^{n – 3}}{a^3} + …..$

लेकिन प्रतिबंध से,

$A = {\,^n}{C_0}{x^n} + {\,^n}{C_2}{x^{n – 2}}{a^2} + {\,^n}{C_4}{x^{n – 4}}{a^4} + ……$

एवं $B = {\,^n}{C_1}{x^{n – 1}}a + {\,^n}{C_3}{x^{n – 3}}{a^3} + ……$

अत: $AB = \frac{1}{4}\left\{ {{{(x + a)}^{2n}} – {{(x – a)}^{2n}}} \right\}$

या $4AB = {(x + a)^{2n}} – {(x – a)^{2n}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.