${(x + a)^n}$ ના વિસ્તરણમાં , $A$ એ અયુગ્મ પદનો સરવાળો દર્શાવે છે અને $B$ એ યુગ્મ પદનો સરવાળો દર્શાવે છે તો . . . ..
$AB = \frac{1}{4}{(x - a)^{2n}} - {(x + a)^{2n}}$
$2AB = {(x + a)^{2n}} - {(x - a)^{2n}}$
$4AB = {(x + a)^{2n}} - {(x - a)^{2n}}$
એકપણ નહીં.
જો $\left({ }^{30} C _1\right)^2+2\left({ }^{30} C _2\right)^2+3\left({ }^{30} C _3\right)^2+\ldots \ldots+30\left({ }^{30} C _{30}\right)^2=$ $\frac{\alpha 60 !}{(30 !)^2}$ હોય,તો $\alpha=............$
જો $\left(1-3 x+10 x^2\right)^{\mathrm{n}}$ ના વિસ્તરણમાં તમામ સહગુણકોના સરવાળાને $\mathrm{A}$ વડે દર્શાવાય તથા $\left(1+x^2\right)^{\mathrm{n}}$ ના વિસ્તરણમાં તમામ સહગુણકોના સરવાળાને $B$ વડે દર્શાવાય, તો :
જો ${(\alpha {x^2} - 2x + 1)^{35}}$ ના વિસ્તરણમાં સહગુણકોનો સરવાળોએ ${(x - \alpha y)^{35}}$ ના વિસ્તરણમાં સહગુણકોનો સરવાળો બરાબર થાય છે , તો $\alpha $=
ધારોકે $\left(a+b x+c x^2\right)^{10}=\sum \limits_{i=0}^{20} p_i x^i a, b, c \in N$ જો $p_1=20$ અને $p_2=210$ હીય, તો $2(a+b+c)=.......$
જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^2},$ તો $C_0^2 + C_1^2 + C_2^2 + C_3^2 + ...... + C_n^2$ =