$\sum\limits_{k = 0}^{10} {^{20}{C_k} = } $

  • A

    ${2^{19}} + \frac{1}{2}{\,^{20}}{C_{10}}$

  • B

    ${2^{19}}$

  • C

    $^{20}{C_{10}}$

  • D

    इनमें से कोई नहीं

Similar Questions

$\frac{1}{{1!(n - 1)\,!}} + \frac{1}{{3!(n - 3)!}} + \frac{1}{{5!(n - 5)!}} + .... = $

$\left( {\begin{array}{*{20}{c}}n\\0\end{array}} \right) + 2\,\left( {\begin{array}{*{20}{c}}n\\1\end{array}} \right) + {2^2}\left( {\begin{array}{*{20}{c}}n\\2\end{array}} \right) + ..... + {2^n}\left( {\begin{array}{*{20}{c}}n\\n\end{array}} \right)$ का मान होगा 

माना कि $X=\left({ }^{10} C_1\right)^2+2\left({ }^{10} C_2\right)^2+3\left({ }^{10} C_3\right)^2+\cdots+10\left({ }^{10} C_{10}\right)^2,$ जहाँ ${ }^{10} C_r, r \in\{1,2, \ldots, 10\}$, द्विपद गुणांकों (binomial coefficients) को दर्शाते हैं। तब $\frac{1}{1430} X$ का मान है ..........|

  • [IIT 2018]

यदि ${S_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ और ${t_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $, तो $\frac{{{t_n}}}{{{S_n}}}$=

  • [AIEEE 2004]

$\sum \limits_{\substack{i, j=0 \\ i \neq j}}^{ n }{ }^n C_i{ }^n C_j$ बराबर है :

  • [JEE MAIN 2022]