$\sum\limits_{k = 0}^{10} {^{20}{C_k} = } $
${2^{19}} + \frac{1}{2}{\,^{20}}{C_{10}}$
${2^{19}}$
$^{20}{C_{10}}$
इनमें से कोई नहीं
${C_1} + 2{C_2} + 3{C_3} + 4{C_4} + .... + n{C_n} = $
यदि $(1+\mathrm{x})^{10}$ के द्विपद प्रसार में $\mathrm{x}^{10-\mathrm{r}}$ का गुणांक $\mathrm{a}_{\mathrm{r}}$ है, तो $\sum_{\mathrm{r}=1}^{10} \mathrm{r}^3\left(\frac{\mathrm{a}_{\mathrm{r}}}{\mathrm{a}_{\mathrm{r}-1}}\right)^2$ बराबर है
यदि $\left( x ^{ n }+\frac{2}{ x ^5}\right)^7$ के द्विपद प्रसार में $x$ की सभी धनात्मक घातों के गुणांको का योगफल $939$ है, तो $n$ के सभी सम्भव पूर्णांक मानों का योग है :
' $x$ ' का एक संभव मान, जिसके लिए व्यंजक $\left\{3^{\log _{3} \sqrt{25^{x-1}+7}}+3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}\right\}^{10}$ के $3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}$ की बढ़ती घातों में प्रसार में नौवॉँ पद $180$ के बराबर है
${(1 + x + {x^2})^n}$ के विस्तार में गुणांकों का योग होगा