7.Binomial Theorem
easy

यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ... + {C_n}{x^n}$, तब  ${C_0} + {C_2} + {C_4} + {C_6} + .....$ का मान होगा

A

${2^{n - 1}}$

B

${2^{n - 1}}$

C

${2^n}$

D

${2^{n - 1}} - 1$

Solution

${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + …. + {C_n}{x^n}$

$x = 1$ रखने पर,

$ \Rightarrow {2^n} = {C_0} + {C_1} + {C_2} + ….. + {C_n}$…..(i)

या ${C_1} + {C_2} + {C_3} + …. + {C_n} = {2^n} – 1$

पुन: $x = -1$ रखने पर,

  $0 = {C_0} – {C_1} + {C_2} – {C_3} + ….$

या ${C_0} + {C_2} + {C_4} + ….$$ = {C_1} + {C_3} + {C_5} + ….$अर्थात् $A = B$

(i) से $A + B  = 2n$  या $A = {2^{n – 1}} = B$

अत: ${C_0} + {C_2} + {C_4} + …. = {2^{n – 1}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.