7.Binomial Theorem
medium

$\sum\limits_{k = 0}^{10} {^{20}{C_k} = } $

A

${2^{19}} + \frac{1}{2}{\,^{20}}{C_{10}}$

B

${2^{19}}$

C

$^{20}{C_{10}}$

D

એકપણ નહિ.

Solution

(a) $\sum\limits_{K = 0}^{10} {^{20}{C_k}} $ i.e., $^{20}{C_0} + {\,^{20}}{C_1} + …… + {\,^{20}}{C_{10}}$

We know that, ${(1 + x)^n} = {\,^n}{C_0} + {\,^n}{C_1}{x^1} + {\,^n}{C_2}{x^2} + …. + {\,^n}{C_n}.{x^n}$

Put $x = 1$; ${2^n} = {\,^n}{C_0} + {\,^n}{C_1} + {\,^n}{C_2} + ….. + {\,^n}{C_n}$

Put $n = 20$; ${2^{20}} = {\,^{20}}{C_0} + {\,^{20}}{C_1} + {\,^{20}}{C_2} + …… + {\,^{20}}{C_{20}}$

${2^{20}} + \,{\,^{20}}{C_{10}} = 2\,[{\,^{20}}{C_0} + {\,^{20}}{C_1} + …… + {\,^{20}}{C_{10}}]$

${[^{20}}{C_0} + {\,^{20}}{C_1} + …… + {\,^{20}}{C_{10}}] = {2^{19}} + \frac{1}{2}{\,^{20}}{C_{10}}$

$\sum\limits_{k = 0}^{10} {^{20}{C_k}} = {2^{19}} + \frac{1}{2}{\,^{20}}{C_{10}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.