3 and 4 .Determinants and Matrices
medium

$\left| {\,\begin{array}{*{20}{c}}{x + 1}&{x + 2}&{x + 4}\\{x + 3}&{x + 5}&{x + 8}\\{x + 7}&{x + 10}&{x + 14}\end{array}\,} \right| = $

A

$2$

B

$-2$

C

${x^2} - 2$

D

None of these

Solution

(b) $\Delta = \left| {\,\begin{array}{*{20}{c}}{ – 1}&{ – 2}&{x + 4}\\{ – 2}&{ – 3}&{x + 8}\\{ – 3}&{ – 4}&{x + 14}\end{array}\,} \right|,$ by $\begin{array}{l}{C_1} \to {C_1} – {C_2}\\{C_2} \to {C_2} – {C_3}\end{array}$

= $\left| {\,\begin{array}{*{20}{c}}
{ – 1}&{ – 1}&x\\
{ – 2}&{ – 1}&x\\
{ – 3}&{ – 1}&{x + 2}
\end{array}\,} \right|,$  , by $\begin{array}{l}{C_2} \to {C_2} – {C_1}\\{C_3} \to {C_3} + 4{C_1}\end{array}$

$ = – ( – x – 2 + x) + 1\,.\,( – 2x – 4 + 3x) + x(2 – 3)$

= $2 + x – 4 – x = – 2$.

Trick : Put $x=1$. Then $\left| {\,\begin{array}{*{20}{c}}2&3&5\\4&6&9\\8&{11}&{15}\end{array}\,} \right| = – 2$

Note : Since there is a option “None of these”, therefore we should check for one more different value of $ x$ . Put $x = – 1$.

$\left| {\,\begin{array}{*{20}{c}}0&1&3\\2&4&7\\6&9&{13}\end{array}\,} \right| = – 1(26 – 42) + 3(18 – 24) = – 2$

Therefore answer is  $ (b).$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.