$\left| {\,\begin{array}{*{20}{c}}0&{p - q}&{p - r}\\{q - p}&0&{q - r}\\{r - p}&{r - q}&0\end{array}\,} \right| = $
$0$
$(p - q)(q - r)(r - p)$
$pqr$
$3pqr$
$\Delta=\left|\begin{array}{lll}3 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3\end{array}\right|$ का मान ज्ञात कीजिए।
यदि $a,b,c$ धनात्मक वास्तविक संख्यायें हैं, तो $x, y $ और $z$ में निम्नलिखित समीकरण निकाय
$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1$, $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1, - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$
यदि रैखिक समीकरण निकाय $x-4 y+7 z=g$, $3 y-5 z=h$, $-2 x+5 y-9 z=k$ संगत (consistent) है, तो
सारणिकों का मान ज्ञात कीजिए:
$\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
यदि समीकरणों के निकाय $\alpha x+y+z=5$, $x +2 y +3 z =4, x +3 y +5 z =\beta$ के अनन्त हल है तो क्रमित युग्म $(\alpha, \beta)$ का मान होगा: