यदि $\alpha ,\,\beta ,\,\gamma \in \,\left( {0,\,\frac{\pi }{2}} \right)$, तो $\frac{{\sin \,(\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }}$ का मान होगा
$< 1$
$> 1$
$1$
इनमें से कोई नहीं
किसी $\theta \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ के लिये, व्यंजक $3(\sin \theta-\cos \theta)^{4}+6(\sin \theta+\cos \theta)^{2}+4 \sin ^{6} \theta$ होगा
$\tan 5x\tan 3x\tan 2x = $
$\cos \left(\frac{2 \pi}{7}\right)+\cos \left(\frac{4 \pi}{7}\right)+\cos \left(\frac{6 \pi}{7}\right)$ का मान बराबर होगा।
यदि $A + B + C = \pi \,(A,B,C > 0)$ तथा $C$ अधिककोण है, तब
निम्नलिखित को सिद्ध कीजिए
$\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$