- Home
- Standard 11
- Mathematics
यदि $\alpha ,\,\beta ,\,\gamma \in \,\left( {0,\,\frac{\pi }{2}} \right)$, तो $\frac{{\sin \,(\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }}$ का मान होगा
$< 1$
$> 1$
$1$
इनमें से कोई नहीं
Solution
(a) यहाँ $\sin \alpha + \sin \beta + \sin \gamma – \sin (\alpha + \beta + \gamma )$
$ = \sin \alpha + \sin \beta + \sin \gamma – \sin \alpha \cos \beta \cos \gamma $
$ – \cos \alpha \sin \beta \cos \gamma – \cos \alpha \cos \beta \sin \gamma + \sin \alpha \sin \beta \sin \gamma $
$ = \sin \alpha (1 – \cos \beta \cos \gamma ) + \sin \beta (1 – \cos \alpha \cos \gamma )$
$ + \sin \gamma (1 – \cos \alpha \cos \beta ) + \sin \alpha \sin \beta \sin \gamma > 0$
$\therefore \sin \alpha + \sin \beta + \sin \gamma > \sin (\alpha + \beta + \gamma )$
$ \Rightarrow \frac{{\sin (\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }} < 1$ .