3.Trigonometrical Ratios, Functions and Identities
medium

If $\alpha + \beta + \gamma = 2\pi ,$ then

A

$\tan \frac{\alpha }{2} + \tan \frac{\beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$

B

$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$

C

$\tan \frac{\alpha }{2} + \tan \frac{\beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$

D

None of these

(IIT-1979)

Solution

(a) We have $\alpha + \beta + \gamma = 2\pi $

$\Rightarrow \frac{\alpha }{2} + \frac{\beta }{2} + \frac{\gamma }{2} = \pi $ 

$ \Rightarrow \tan \left( {\frac{\alpha }{2} + \frac{\beta }{2} + \frac{\gamma }{2}} \right) = \tan \pi = 0$ 

$ \Rightarrow \tan \frac{\alpha }{2} + \tan \frac{\beta }{2} + \tan \frac{\gamma }{2} – \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2} = 0$

$ \Rightarrow \tan \frac{\alpha }{2} + \tan \frac{\beta }{2} + \tan \frac{\gamma }{2}$

$= \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.