$\cos \alpha .\sin (\beta - \gamma ) + \cos \beta .\sin (\gamma - \alpha ) + \cos \gamma .\sin (\alpha - \beta ) = $
$0$
$1/2$
$1$
$4\cos \alpha \cos \beta \cos \gamma $
यदि $a{\sin ^2}x + b{\cos ^2}x = c,\,\,$$b\,{\sin ^2}y + a\,{\cos ^2}y = d$ तथा $a\,\tan x = b\,\tan y,$ तब $\frac{{{a^2}}}{{{b^2}}}$ बराबर है
$\sin {163^o}\cos {347^o} + \sin {73^o}\sin {167^o} = $
$\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{4\pi }}{7} = $
यदि $A + B + C = \frac{{3\pi }}{2},$ तब $\cos 2A + \cos 2B + \cos 2C = $
$\frac{{\tan {{70}^o} - \tan {{20}^o}}}{{\tan {{50}^o}}}$ का मान होगा