$\cos \alpha .\sin (\beta - \gamma ) + \cos \beta .\sin (\gamma - \alpha ) + \cos \gamma .\sin (\alpha - \beta ) = $
$0$
$1/2$
$1$
$4\cos \alpha \cos \beta \cos \gamma $
यदि $\tan \alpha = \frac{1}{7}$ तथा $\sin \beta = \frac{1}{{\sqrt {10} }}\left( {0 < \alpha ,\,\beta < \frac{\pi }{2}} \right)$, तब $2\beta $ बराबर है
किसी $\theta \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ के लिये, व्यंजक $3(\sin \theta-\cos \theta)^{4}+6(\sin \theta+\cos \theta)^{2}+4 \sin ^{6} \theta$ होगा
$2\cos x - \cos 3x - \cos 5x = $
${\rm{cosec }}A - 2\cot 2A\cos A = $
यदि $x + y + z = {180^o},$ तो $\cos 2x + \cos 2y - \cos 2z$ बराबर है