જો $\sin \left( {x + \frac{{4\pi }}{9}} \right) = a;\,$ $\frac{\pi }{9}\, < \,x\, < \,\frac{\pi }{3},$ થાય તો $\cos \left( {x + \frac{{7\pi }}{9}} \right)$ =
$\frac{{\sqrt {(1 - {a^2})} - a\sqrt 3 }}{2}$
$\frac{{1 - {a^2} + a\sqrt 3 }}{2}$
$\frac{{a\sqrt 3 - \sqrt {(1 - {a^2})} }}{2}$
$\frac{{ - \sqrt {(1 - {a^2})} - a\sqrt 3 }}{2}$
$(sinx + cosecx)^2 + (cosx + secx)^2 - ( tanx + cotx)^2$ =
જો $\tan \alpha = \frac{1}{7}$ અને $\sin \beta = \frac{1}{{\sqrt {10} }}\left( {0 < \alpha ,\,\beta < \frac{\pi }{2}} \right)$, તો $2\beta = . . . .$
સાબિત કરો કે : $\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x=1$
જો $A + B + C = \pi \,(A,B,C > 0)$ અને ખૂણો $C$ એ ગુરુકોણ હોય તો
ત્રિકોણ $ABC$ માં , $\tan A + \tan B + \tan C = 6$ અને $\tan A\tan B = 2,$ તો $\tan A,\,\,\tan B$ અને $\tan C$ મેળવો.