$\left( {\frac{{\sin 2A}}{{1 + \cos 2A}}} \right)\,\left( {\frac{{\cos A}}{{1 + \cos A}}} \right)= $

  • A

    $\tan \frac{A}{2}$

  • B

    $\cot \frac{A}{2}$

  • C

    $\sec \frac{A}{2}$

  • D

    ${\rm{cosec}}\frac{A}{2}$

Similar Questions

$\frac{{\tan \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)\,\,\,\cos \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)}}{{\cos \,(2\,\pi \,\, - \,\alpha )}}$ $+ cos \left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right) \,sin (\pi -\alpha ) + cos (\pi +\alpha ) sin \,\left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right)$ = 

${(\cos \alpha + \cos \beta )^2} + {(\sin \alpha + \sin \beta )^2} = $

જો $\tan \theta = t,$ તો $\tan 2\theta + \sec 2\theta = $

$1 + \cos \,{56^o} + \cos \,{58^o} - \cos {66^o} = $

  • [IIT 1964]

$2\,{\sin ^2}\beta + 4\,\,\cos \,(\alpha + \beta )\,\,\sin \,\alpha \,\sin \,\beta + \cos \,2\,(\alpha + \beta ) = $

  • [IIT 1977]