$\left( {\frac{{\sin 2A}}{{1 + \cos 2A}}} \right)\,\left( {\frac{{\cos A}}{{1 + \cos A}}} \right)= $
$\tan \frac{A}{2}$
$\cot \frac{A}{2}$
$\sec \frac{A}{2}$
${\rm{cosec}}\frac{A}{2}$
$\frac{{\tan \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)\,\,\,\cos \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)}}{{\cos \,(2\,\pi \,\, - \,\alpha )}}$ $+ cos \left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right) \,sin (\pi -\alpha ) + cos (\pi +\alpha ) sin \,\left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right)$ =
${(\cos \alpha + \cos \beta )^2} + {(\sin \alpha + \sin \beta )^2} = $
જો $\tan \theta = t,$ તો $\tan 2\theta + \sec 2\theta = $
$1 + \cos \,{56^o} + \cos \,{58^o} - \cos {66^o} = $
$2\,{\sin ^2}\beta + 4\,\,\cos \,(\alpha + \beta )\,\,\sin \,\alpha \,\sin \,\beta + \cos \,2\,(\alpha + \beta ) = $