3.Trigonometrical Ratios, Functions and Identities
hard

$1 + \cos \,{56^o} + \cos \,{58^o} - \cos {66^o} = $

A

$2\,\cos {28^o}\,\cos \,{29^o}\,\cos \,{33^o}$

B

$4\,\cos {28^o}\,\cos \,{29^o}\,\cos \,{33^o}$

C

$4\,\cos {28^o}\,\cos \,{29^o}\,\sin {33^o}$

D

$2\,\cos {28^o}\,\cos \,{29^o}\,\sin \,{33^o}$

(IIT-1964)

Solution

(c) $1 + \cos 56^\circ + \cos 58^\circ – \cos 66^\circ $

$ = 2{\cos ^2}28^\circ + 2\sin 62^\circ .\sin 4^\circ $

$ = 2{\cos ^2}28^\circ + 2\cos 28^\circ .\sin 4^\circ $

$ = 2\cos 28^\circ (\cos 28^\circ + \cos 86^\circ )$ 

$ = 2\cos 28^\circ .2\cos 57^\circ \cos 29^\circ $

$ = 4\cos 28^\circ \cos 29^\circ \sin 33^\circ $.

Aliter : Apply the conditional identity

$\cos A + \cos B – \cos C = – 1 + 4\cos \frac{A}{2}\cos \frac{B}{2}\sin \frac{C}{2}$                                                              $[\, \because 56^\circ  + 58^\circ  + 66^\circ  = 180^\circ ]$

We get the value of required expression equal to $4\cos 28^\circ \cos 29^\circ \sin 33^\circ $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.