$1 + \cos \,{56^o} + \cos \,{58^o} - \cos {66^o} = $
$2\,\cos {28^o}\,\cos \,{29^o}\,\cos \,{33^o}$
$4\,\cos {28^o}\,\cos \,{29^o}\,\cos \,{33^o}$
$4\,\cos {28^o}\,\cos \,{29^o}\,\sin {33^o}$
$2\,\cos {28^o}\,\cos \,{29^o}\,\sin \,{33^o}$
If $\tan \theta = \frac{{\sin \alpha - \cos \alpha }}{{\sin \alpha + \cos \alpha }},$ then $\sin \alpha + \cos \alpha $ and $\sin \alpha - \cos \alpha $ must be equal to
$1 - 2{\sin ^2}\left( {\frac{\pi }{4} + \theta } \right) = $
If $0 < x , y < \pi$ and $\cos x +\cos y-\cos ( x + y )=\frac{3}{2},$ then $\sin x+\cos y$ is equal to ...... .
$\cos A + \cos (240^\circ + A) + \cos (240^\circ - A) = $
$2\sin A{\cos ^3}A - 2{\sin ^3}A\cos A = $