$1 + \cos \,{56^o} + \cos \,{58^o} - \cos {66^o} = $
$2\,\cos {28^o}\,\cos \,{29^o}\,\cos \,{33^o}$
$4\,\cos {28^o}\,\cos \,{29^o}\,\cos \,{33^o}$
$4\,\cos {28^o}\,\cos \,{29^o}\,\sin {33^o}$
$2\,\cos {28^o}\,\cos \,{29^o}\,\sin \,{33^o}$
If $cos A = {3\over 4} , $ then $32\sin \left( {\frac{A}{2}} \right)\sin \left( {\frac{{5A}}{2}} \right) = $
If $sin t + cos t = \frac{1}{5}$ then $tan \frac{t}{2}$ is equal to :
If $\tan A = \frac{1}{2},$ then $\tan 3A = $
The sum of all values of $\theta \, \in \,\left( {0,\frac{\pi }{2}} \right)$ satisfying ${\sin ^2}\,2\theta + {\cos ^4}\,2\theta = \frac{3}{4}$ is
$\sin 4\theta $ can be written as