$\frac{{\sin \theta + \sin 2\theta }}{{1 + \cos \theta + \cos 2\theta }} = $
$\frac{1}{2}\tan \theta $
$\frac{1}{2}\cot \theta $
$\tan \theta $
$\cot \theta $
If $\alpha $ is a root of $25{\cos ^2}\theta + 5\cos \theta - 12 = 0$, $\pi /2 < \alpha < \pi $, then $\sin 2\alpha $ is equal to
$96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$ is equal to$......$.
Let $\alpha ,\beta $ be such that $\pi < (\alpha - \beta ) < 3\pi $. If $\sin \alpha + \sin \beta = - \frac{{21}}{{65}}$ and $\cos \alpha + \cos \beta = - \frac{{27}}{{65}},$ then the value of $\cos \frac{{\alpha - \beta }}{2}$ is
If $cos A = {3\over 4} , $ then $32\sin \left( {\frac{A}{2}} \right)\sin \left( {\frac{{5A}}{2}} \right) = $
The value of $cot\, 7\frac{{{1^0}}}{2}$ $+ tan\, 67 \frac{{{1^0}}}{2} - cot 67 \frac{{{1^0}}}{2} - tan7 \frac{{{1^0}}}{2}$ is :