$\frac{{\sin \theta + \sin 2\theta }}{{1 + \cos \theta + \cos 2\theta }} = $
$\frac{1}{2}\tan \theta $
$\frac{1}{2}\cot \theta $
$\tan \theta $
$\cot \theta $
${\rm{cosec }}A - 2\cot 2A\cos A = $
If $A + B + C = \pi ,$ then ${\tan ^2}\frac{A}{2} + {\tan ^2}\frac{B}{2} + $${\tan ^2}\frac{C}{2}$ is always
The expression $\frac{{{{\tan }^2}20^\circ - {{\sin }^2}20^\circ }}{{{{\tan }^2}20^\circ \,\cdot\,{{\sin }^2}20^\circ }}$ simplifies to
If $\frac{{5\pi }}{2} < x < 3\pi $, then the value of the expression $\frac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}$ is
The value of $\frac{{3 + \cot \,7\,{6^ \circ }\,\cot \,{{16}^ \circ }}}{{\cot \,{{76}^ \circ } + \cot \,{{16}^ \circ }}}$ is :