$\frac{{\sin \theta + \sin 2\theta }}{{1 + \cos \theta + \cos 2\theta }} = $

  • A

    $\frac{1}{2}\tan \theta $

  • B

    $\frac{1}{2}\cot \theta $

  • C

    $\tan \theta $

  • D

    $\cot \theta $

Similar Questions

 $[1 - sin (3\pi - \alpha ) + cos (3\pi + \alpha )]$ $\left[ {1\,\, - \,\,\sin \,\left( {\frac{{3\,\pi }}{2}\,\, - \,\,\alpha } \right)\,\, + \,\,\cos \,\left( {\frac{{5\,\pi }}{2}\,\, - \,\,\alpha } \right)} \right]$ = 

જો $a{\sin ^2}x + b{\cos ^2}x = c,\,\,$$b\,{\sin ^2}y + a\,{\cos ^2}y = d$ અને $a\,\tan x = b\,\tan y,$ તો $\frac{{{a^2}}}{{{b^2}}}  = . . ..$

જો $\frac{{5\pi }}{2} < x < 3\pi $,હોય તો $\frac{{\sqrt {1 - \sin x}  + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x}  - \sqrt {1 + \sin x} }}$ = 

જો $\sin \alpha = \frac{{336}}{{625}}$ અને $450^\circ < \alpha < 540^\circ ,$ તો $\sin \left( {\frac{\alpha }{4}} \right) = $

જો $\cos \left( {\alpha + \beta } \right) = \frac{4}{5}$ અને $\sin \left( {\alpha - \beta } \right) = \frac{5}{{13}}$,કે જ્યાં $0 \le \alpha ,\beta \le \frac{\pi }{4}$. તો $\tan 2\alpha $ મેળવો.

  • [IIT 1979]