3.Trigonometrical Ratios, Functions and Identities
medium

સાબિત કરો કે, $=\frac{\sin 5 x-2 \sin 3 x+\sin x}{\cos 5 x-\cos x}=\tan x$

Option A
Option B
Option C
Option D

Solution

We have

${\text{L}}{\text{.H}}{\text{.S}}{\text{.}}\frac{{\sin 5x – 2\sin 3x + \sin x}}{{\cos 5x – \cos x}}$

$ = \frac{{\sin 5x + \sin x – 2\sin 3x}}{{\cos 5x – \cos x}}$

$ = \frac{{2\sin 3x\cos 2x – 2\sin 3x}}{{ – 2\sin 3x\sin 2x}}$

$ =  – \frac{{\sin 3x(\cos 2x – 1)}}{{\sin 3x\sin 2x}}$

$ = \frac{{1 – \cos 2x}}{{\sin 2x}}$

$ = \frac{{2{{\sin }^2}x}}{{2\sin x\cos x}}$

$ = \tan \,x = R.H.S$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.