Prove that $\tan 4 x=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that $\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}$

$\therefore$ $L.H.S.$ $=\tan 4 x=\tan 2(2 x)$

$=\frac{2 \tan 2 x}{1-\tan ^{2}(2 x)}$

$=\frac{2\left(\frac{2 \tan x}{1-\tan ^{2} x}\right)}{1-\left(\frac{2 \tan x}{1-\tan ^{2} x}\right)^{2}}$

$=\frac{\left(\frac{4 \tan x}{1-\tan ^{2} x}\right)}{\left[1-\frac{4 \tan ^{2} x}{\left(1-\tan ^{2} x\right)^{2}}\right]}$

$=\frac{\left(\frac{4 \tan x}{1-\tan ^{2} x}\right)}{\left[\frac{\left(1-\tan ^{2} x\right)^{2}-4 \tan ^{2} x}{\left(1-\tan ^{2} x\right)^{2}}\right]}$

$=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{\left(1-\tan ^{2} x\right)^{2}-4 \tan ^{2} x}$

$=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1+\tan ^{4} x-2 \tan ^{2} x-4 \tan ^{2} x}$

$=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x}= R . H.S.$

Similar Questions

Prove that $\sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x$

$2{\cos ^2}\theta - 2{\sin ^2}\theta = 1$, then $\theta  =$ .......$^o$

If $\tan \alpha = \frac{1}{7},\;\tan \beta = \frac{1}{3},$ then $\cos 2\alpha = $

$2\cos x - \cos 3x - \cos 5x = $

$\sin 4\theta $ can be written as