3.Trigonometrical Ratios, Functions and Identities
medium

$\frac{{\sin 3\theta - \cos 3\theta }}{{\sin \theta + \cos \theta }} + 1 = $

A

$2\sin 2\theta $

B

$2 cos 2\theta$

C

$\tan 2\theta $

D

$\cot 2\theta $

Solution

(a) Let $\frac{{\sin 3\theta – \cos 3\theta }}{{\sin \theta + \cos \theta }} = \frac{N}{D}$(say)

Then $N = 3\sin \theta – 4{\sin ^3}\theta – (4{\cos ^3}\theta – 3\cos \theta )$

$ = 3(\sin \theta + \cos \theta ) – 4({\sin ^3}\theta + {\cos ^3}\theta )$

$ = (\sin \theta + \cos \theta )\{ 3 – 4({\sin ^2}\theta – \sin \theta \cos \theta + {\cos ^2}\theta )\} $

$\therefore \;\frac{N}{D} + 1 $

$=  \frac{{(\sin \theta + \cos \theta )\{ 3 – 4(1 – \sin \theta \cos \theta )\} }}{{\sin \theta + \cos \theta }} + 1$

$ = 3 – 4(1 – \sin \theta \cos \theta ) + 1$

$ = 4\sin \theta \cos \theta = 2\sin 2\theta $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.