$1 + \cos \,{56^o} + \cos \,{58^o} - \cos {66^o} = $
$2\,\cos {28^o}\,\cos \,{29^o}\,\cos \,{33^o}$
$4\,\cos {28^o}\,\cos \,{29^o}\,\cos \,{33^o}$
$4\,\cos {28^o}\,\cos \,{29^o}\,\sin {33^o}$
$2\,\cos {28^o}\,\cos \,{29^o}\,\sin \,{33^o}$
$(\sec 2A + 1){\sec ^2}A = $
यदि $\sin \theta + \cos \theta = x,$ तब ${\sin ^6}\theta + {\cos ^6}\theta = \frac{1}{4}[4 - 3{({x^2} - 1)^2}]$ होगा
$\frac{{\cos 12^\circ - \sin 12^\circ }}{{\cos 12^\circ + \sin 12^\circ }} + \frac{{\sin 147^\circ }}{{\cos 147^\circ }} = $
$96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$ बराबर है
$\cos \frac{{2\pi }}{{15}}\cos \frac{{4\pi }}{{15}}\cos \frac{{8\pi }}{{15}}\cos \frac{{16\pi }}{{15}} =$