$\left( {1 + \cos \frac{\pi }{8}} \right)\,\left( {1 + \cos \frac{{3\pi }}{8}} \right)\,\left( {1 + \cos \frac{{5\pi }}{8}} \right)\,\left( {1 + \cos \frac{{7\pi }}{8}} \right) = $

  • [IIT 1984]
  • A

    $\frac{1}{2}$

  • B

    $\frac{1}{4}$

  • C

    $\frac{1}{8}$

  • D

    $\frac{1}{{16}}$

Similar Questions

यदि $\cos \,(\theta - \alpha ) = a,\,\,\sin \,(\theta - \beta ) = b,\,\,$ हो, तब  ${\cos ^2}(\alpha - \beta ) + 2ab\,\sin \,(\alpha - \beta )$ बराबर है

${\sin ^4}\frac{\pi }{4} + {\sin ^4}\frac{{3\pi }}{8} + {\sin ^4}\frac{{5\pi }}{8} + {\sin ^4}\frac{{7\pi }}{8} = $

$\frac{1}{{\sin 10^\circ }} - \frac{{\sqrt 3 }}{{\cos 10^\circ }} =$

  • [IIT 1974]

$\cos \alpha .\sin (\beta - \gamma ) + \cos \beta .\sin (\gamma - \alpha ) + \cos \gamma .\sin (\alpha - \beta ) = $

यदि $\tan \alpha = \frac{1}{7}$ तथा  $\sin \beta = \frac{1}{{\sqrt {10} }}\left( {0 < \alpha ,\,\beta < \frac{\pi }{2}} \right)$, तब  $2\beta $ बराबर है