If $x = \cos 10^\circ \cos 20^\circ \cos 40^\circ ,$ then the value of $x$ is
$\frac{1}{4}\tan 10^\circ $
$\frac{1}{8}\cot 10^\circ $
$\frac{1}{8}{\rm{cosec}}10^\circ $
$\frac{1}{8}\sec 10^\circ $
If $\sin \theta+\cos \theta=\frac{1}{2}$, then $16(\sin (2 \theta)+\cos (4 \theta)+\sin (6 \theta))$ is equal to:
If $\tan A = \frac{1}{2},\tan B = \frac{1}{3},$ then $\cos 2A = $
Prove that $\cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x$
The value of $x$ that satisfies the relation $x = 1 - x + x^2 - x^3 + x^4 - x^5 + ......... \infty$
Prove that $\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x=1$