3.Trigonometrical Ratios, Functions and Identities
easy

यदि $x + \frac{1}{x} = 2\,\cos \theta ,$ तो ${x^3} + \frac{1}{{{x^3}}} = $

A

$\cos \,\,3\theta $

B

$2\,\cos \,3\theta $

C

$\frac{1}{2}\cos \,3\theta $

D

$\frac{1}{3}\cos \,3\theta $

Solution

(b) यहाँ  $x + \frac{1}{x} = 2\cos \theta $,

अब  ${x^3} + \frac{1}{{{x^3}}} = {\left( {x + \frac{1}{x}} \right)^3} – 3x\frac{1}{x}\left( {x + \frac{1}{x}} \right)$ 

$=  {(2\cos \theta )^3} – 3(2\cos \theta ) = 8{\cos ^3}\theta – 6\cos \theta $

$=  2(4{\cos ^3}\theta – 3\cos \theta ) = 2\cos 3\theta $. 

ट्रिक​ : $x = 1$ $ \Rightarrow $ $\theta = {0^\circ }$. 

तब  ${x^3} + \frac{1}{{{x^3}}} = 2 = 2\cos 3\theta $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.