The most general value of $\theta $ which will satisfy both the equations $\sin \theta = - \frac{1}{2}$ and $\tan \theta = \frac{1}{{\sqrt 3 }}$ is
$n\pi + {( - 1)^n}\frac{\pi }{6}$
$n\pi + \frac{\pi }{6}$
$2n\pi \pm \frac{\pi }{6}$
None of these
If $\frac{{\tan 3\theta - 1}}{{\tan 3\theta + 1}} = \sqrt 3 $, then the general value of $\theta $ is
The general solution of $sin\, x + sin \,5x = sin\, 2x + sin \,4x$ is :
Number of solution $(s)$ of the equation ${\cos ^2}2x + {\cos ^2}\frac{{5x}}{4} = \cos 2x\,{\cos ^2}5x$ in $\left[ {0,\frac{\pi }{3}} \right]$ is
If $\tan \theta = - \frac{1}{{\sqrt 3 }}$ and $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, then the principal value of $\theta $ will be
The sides of a triangle are $\sin \alpha ,\,\cos \alpha $ and $\sqrt {1 + \sin \alpha \cos \alpha } $ for some $0 < \alpha < \frac{\pi }{2}$. Then the greatest angle of the triangle is.....$^o$