The most general value of $\theta $ which will satisfy both the equations $\sin \theta = - \frac{1}{2}$ and $\tan \theta = \frac{1}{{\sqrt 3 }}$ is
$n\pi + {( - 1)^n}\frac{\pi }{6}$
$n\pi + \frac{\pi }{6}$
$2n\pi \pm \frac{\pi }{6}$
None of these
Find the general solution of the equation $\sin 2 x+\cos x=0$
All possible values of $\theta \in[0,2 \pi]$ for which $\sin 2 \theta+\tan 2 \theta>0$ lie in
The sum of solutions in $x \in (0,2\pi )$ of the equation, $4\cos (x).\cos \left( {\frac{\pi }{3} - x} \right).\cos \left( {\frac{\pi }{3} + x} \right) = 1$ is equal to
If $\cos \theta = - \frac{1}{{\sqrt 2 }}$ and $\tan \theta = 1$, then the general value of $\theta $ is
The solution of the equation $4{\cos ^2}x + 6$${\sin ^2}x = 5$