$\sim p \wedge q$ is logically equivalent to

  • A

    $p \to q$

  • B

    $q \to p$

  • C

    $\sim (p \to q)$

  • D

    $\sim (q \to p)$

Similar Questions

Among the statements

$(S1)$: $(p \Rightarrow q) \vee((\sim p) \wedge q)$ is a tautology

$(S2)$: $(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$ is a contradiction

  • [JEE MAIN 2023]

The number of values of $r \in\{p, q, \sim p , \sim q \}$ for which $((p \wedge q) \Rightarrow(r \vee q)) \wedge((p \wedge r) \Rightarrow q)$ is a tautology, is:

  • [JEE MAIN 2023]

Let $p$ and $q$ be two Statements. Amongst the following, the Statement that is equivalent to $p \to q$ is

  • [AIEEE 2012]

Which of the following is not a statement

Let $p$ and $q$ be two statements.Then $\sim( p \wedge( p \Rightarrow \sim q ))$ is equivalent to

  • [JEE MAIN 2023]