$\sim p \wedge q$ is logically equivalent to
$p \to q$
$q \to p$
$\sim (p \to q)$
$\sim (q \to p)$
Among the statements
$(S1)$: $(p \Rightarrow q) \vee((\sim p) \wedge q)$ is a tautology
$(S2)$: $(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$ is a contradiction
The number of values of $r \in\{p, q, \sim p , \sim q \}$ for which $((p \wedge q) \Rightarrow(r \vee q)) \wedge((p \wedge r) \Rightarrow q)$ is a tautology, is:
Let $p$ and $q$ be two Statements. Amongst the following, the Statement that is equivalent to $p \to q$ is
Which of the following is not a statement
Let $p$ and $q$ be two statements.Then $\sim( p \wedge( p \Rightarrow \sim q ))$ is equivalent to