$R$ ત્રિજ્યાનો અવાહક ધન ગોળો સમાન રીતે વિદ્યુતભારીત થયેલો છે. તેના કેન્દ્રથી $r$ અંતરે આવેલ ગોળાને લીધે વિદ્યુતક્ષેત્રનું મૂલ્ય ........ છે.
$(1)\, r$ ના વધારા સાથે વધે છે $r < R \,$
$(2)\, r$ ના વધારા સાથે ઘટશે $0 < r <$ $\infty$
$(3)\, r$ ના વધારા સાથે ઘટશે $R < r < \infty \,$
$(4)\, r = R$ આગળ તે સતત છે.
$1,3$
$3,4$
$1,2$
$2,4$
આકૃતિમાં એક ખૂબ મોટું ધન વિદ્યુતભારિત સમતલ પૃષ્ઠ દર્શાવેલ છે. $P _{1}$ અને $P _{2}$ એ વિદ્યુતભાર વિતરણથી $l$ અને $2 l$ જેટલા લઘુત્તમ અંતરે બે બિંદુુઓ છે. જે પૃષ્ઠ વીજભાર ઘનતા $\sigma$ હોય, તો $P_{1}$ અને $P_{2}$ આગળ વિદ્યુતક્ષેત્ર $E_{1}$ અને $E_{2}$ માટે સાચો વિકલ્પ પસંદ કરો
$S(r)\,\, = \,\,\frac{Q}{{\pi {R^4}}}\,r$ એ $R$ ત્રિજ્યા અને કુલ વિદ્યુતભાર $Q$ વાળા એક ધન ગોળાના વિદ્યુતભાર વિતરણની ઘનતા આપે છે. ગોળાના કેન્દ્રથી $r_1$ અંતરે ગોળાની અંદરના બિંદુ $P$ માટે વિદ્યુતક્ષેત્રનું મૂલ્ય ....... છે.
$q$ વિદ્યુતભાર સાથે $r\, (r < R)$ ના વિદ્યુતભારીત ગોળીય વાહકના કેન્દ્રથી $r$ (અંતરે $R$) આવેલા બિંદુ આગળ વિદ્યુતક્ષેત્રની તીવ્રતા ....... હશે.
સમાન રીતે ભારીત અવાહક ધનગોળાના વીજક્ષેત્રના ફેરફારને વિવિધ બિંદુઓ આધારીત આલેખીય રીતે દર્શાવી શકાય છે.
આકૃતિમાં દર્શાવ્યા પ્રમાણે બે બિંદુવત વિજભાર $+Q$ અને $-Q$ ને એક ગોળીય કવચની બખોલમાં મૂકેલા છે. વિજભારને બખોલની સપાટીની નજીક અને કેન્દ્રથી વિરુદ્ધ દિશામાં મૂકેલા છે. જો $\sigma _1$ એ અંદરની સપાટી પૃષ્ઠ વિજભારઘનતા અને $Q_1$ તેના પર રહેલો કુલ વિજભાર અને $\sigma _2$ એ બહારની સપાટીની પૃષ્ઠ વિજભારઘનતા અને $Q_2$ તેના પર રહેલો કુલ વિજભાર હોય તો ...