$5, 8, 11, 14, .......$ મું શ્રેણીનું કયું પદ $320$ છે ?
$106$
$105$
$107$
$104$
શ્રેણી $S = 1 -2 + 3\, -\, 4 … n$ પદો , માટે
વિધાન $-1$ : શ્રેણીનો સરવાળો $n$ પર આધારિત છે , i.e. જ્યાં તે યુગ્મ કે અયુગ્મ હોય
વિધાન $-2$ : શ્રેણીનો સરવાળો $-\frac {n}{2}$ જ્યાં $n$ એ કોઈ યુગ્મ પૂર્ણાક છે
$f(x)$ એ દ્વિઘાત બહુપદી છે. જો $f(1) = f(-1)$ અને $a, b, c$ સમાંતર શ્રેણી બનાવે તો $f'(a), f'(b) ,f'(c)$ પણ..... શ્રેણી બનાવે.
જો ${T_r}$ એ સમાંતર શ્રેણીનું ${r^{th}}$ મું પદ દર્શાવે કે જ્યાં $r = 1,\;2,\;3,....$.,જો કોઇક ધન પૂર્ણાંક $m,\;n$ માટે ${T_m} = \frac{1}{n}$ અને ${T_n} = \frac{1}{m}$, તો ${T_{mn}}$ મેળવો.
સમાંતર શ્રેણીમાં યુગ્મ પદ છે. જો તેમાં રહેલ અયુગ્મ પદનો સરવાળો $24$ અને યુગ્મ પદનો સરવાળો $30$ છે. જો અંતિમ પદ પ્રથમ પદ કરતાં $10\frac{1}{2}$ જેટલું વધારે હોય તો સમાંતર શ્રેણીના પદની સંખ્યા મેળવો.
જો સમાંતર શ્રેણીમાં આવેલી ત્રણ સંખ્યાઓનો સરવાળો $24$ અને તેમનો ગુણાકાર $440$ હોય તો આ સંખ્યાઓ શોધો.