English
Hindi
8. Sequences and Series
hard

જો $1 + r + r^2 + …. + r^n = (1 + r) (1 + r^2) (1 + r^4) (1 + r^8),$ હોય તો $n$ નું મૂલ્ય કેટલું થાય ?

A

$13$

B

$14$

C

$15$

D

$16$

Solution

$1 + r + r^2 + …… + r^n = (1 + r) (1 + r^2) + (1 + r^4) (1 + r^8)$ છે.

$ \Rightarrow \,\,\frac{{1\,\, – \,\,{r^{n\, + \,1}}}}{{1\,\, – \,\,r}}= (1 + r) (1 + r^2) (1 + r^4) (1 + r^8)$

$⇒ (1 – r^{n + 1}) = (1 – r) (1 + r) (1 + r^2) (1 + r^4) (1 + r^8)$

$ (1 -r^{ n + 1})= (1 – r^{16})$

$⇒ n + 1 = 16   ⇒ n = 15$

 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.