બૅક્ટરિયાના ઉછેરમાં તેની સંખ્યા દર કલાકે બમણી થાય છે. જો શરૂઆતમાં બૅક્ટરિયાની સંખ્યા $30$ હોય, તો $2$ કલાક, $4$ કલાક, અને $n$ માં કલાકે બૅક્ટરિયાની સંખ્યા શોધો.
It is given that the number of bacteria doubles every hour. Therefore, the number of bacteria after every hour will form a $G.P.$
Here, $a=30$ and $r=2 \quad \therefore a_{3}=a r^{2}=(30)(2)^{2}=120$
Therefore, the number of bacteria at the end of $2^{\text {nd }}$ hour will be $120 .$
$a_{5}=a r^{4}=(30)(2)^{4}=480$
The number of bacteria at the end of $4^{\text {th }}$ hour will be $480 . $
$a_{n+1}=a r^{n}=(30) 2^{n}$
Thus, number of bacteria at the end of $n^{t h}$ hour will be $30(2)^{n}$
શ્રેણીઓ $2,4,8,16,32$ અને $128,32,8,2, \frac{1}{2}$ નાં સંગત પદોના ગુણાકારનો સરવાળો શોધો.
સમગુણોત્તર શ્રેણીનાં ત્રણ પદનો સરવાળો $19$ અને ગુણાકાર $216$ હોય, તો આ શ્રેણીનો સામાન્ય ગુણોત્તર...... છે.
જો $\frac{6}{3^{12}}+\frac{10}{3^{11}}+\frac{20}{3^{10}}+\frac{40}{3^{9}}+\ldots . .+\frac{10240}{3}=2^{ n } \cdot m$, કે જ્યાં $m$ એ અયુગ્મ છે તો $m . n$ ની કિમંત મેળવો.
$(1 - x) (1 - 2x) (1 - 2^2. x) (1 - 2^3. x) …. (1 - 2^{15}. x) $ ના ગુણાકારમાં $x^{15} $ નો સહગુણક મેળવો.
જો $1 + r + r^2 + …. + r^n = (1 + r) (1 + r^2) (1 + r^4) (1 + r^8),$ હોય તો $n$ નું મૂલ્ય કેટલું થાય ?