$0.7 +0 .77 + 0.777 + ...... $ શ્રેણીના $10$ પદોનો સરવાળો કેટલો થાય ?

  • A

    $\frac{7}{9}\,\left( {89\, + \,\frac{1}{{{{10}^{10}}}}} \right)$

  • B

    $\frac{7}{{81}}\,\left( {89\, + \,\frac{1}{{{{10}^{10}}}}} \right)$

  • C

    $\frac{7}{{81}}\,\left( {89\, + \frac{1}{{{{10}^9}}}} \right)$

  • D

    આપેલ પૈકી એક પણ નહિ

Similar Questions

અનંત સમગુણોતર શ્નેણીનુ પ્રથમ પદ $x$ હોય અને શ્રેણીનેા સરવાળો $5$ હોય તો

  • [IIT 2004]

જો $a, b, c,d$ તે સમગુણોત્તર શ્રેણીમાં હોય, તો બતાવો કે $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$ 

જો સમીકરણ $x^5 - 40x^4 + px^3 + qx^2 + rx + s = 0$ના બીજો સમગુણોત્તર શ્રેણીમાં હોય અને તેમના વ્યસ્તનો સરવાળો $10$ થાય તો $\left| s \right|$ ની કિમત મેળવો 

જો ${s_n} = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ........ + \frac{1}{{{2^{n - 1}}}}$ ,હોય તો $n$ ની ન્યૂનતમ કિમત મેળવો કે જેથી $2 - {s_n} < \frac{1}{{100}}$ થાય 

સમગુણોત્તર શ્રેણીનાં કેટલાંક પદોનો સરવાળો $315$ છે. તેનું પ્રથમ પદ અને સામાન્ય ગુણોત્તર અનુક્રમે $5$ અને $2$ છે. તેનું છેલ્લું પદ અને પદોની સંખ્યા શોધો