જેનું પ્રથમ પદ $n ^{2}$ અને સામાન્ય ગુણોત્તર $\frac{1}{( n +1)^{2}}$ હોય તેવી અનંત સમગુણોતર શ્રેણીનો સરવાળો ધારો કે $S _{ n }$ છે, જ્યાં $n =1,2, \ldots \ldots, 50$ તો, $\frac{1}{26}+\sum_{ n =1}^{50}\left( S _{ n }+\frac{2}{ n +1}- n -1\right)$ ની કીમત................છે
$41600$
$47651$
$41651$
$41671$
સમગુણોત્તર શ્રેણીનાં પ્રથમ ત્રણ પદોનો સરવાળો $\frac{13}{12}$ છે. અને તેમનો ગુણોતર $-1$ છે. તો સામાન્ય ગુણોતર અને તે પદ શોધો.
ધારોકે $a_1, a_2, a_3, \ldots .$. વધતી ધન સંખ્યાઓ ની સમગુણોત્તર શ્રેણી છે.ધારોકે તેના છઠા અને $8$મા પદોનો સરવાળો $2$ છે તથા તેના ત્રીજા અને $5$મા પદોનો ગુણાકાર $\frac{1}{9}$ છે.તો $6\left(a_2+a_4\right)\left(a_4+a_6\right)=.....$
જો $486$ અને $2\over3$ વચ્ચે $5$ સમગુણોત્તર મધ્યકો આવેલા હોય તો ચોથો સમગુણોત્તર મધ્યક કયો હોય ?
$(1 - x) (1 - 2x) (1 - 2^2. x) (1 - 2^3. x) …. (1 - 2^{15}. x) $ ના ગુણાકારમાં $x^{15} $ નો સહગુણક મેળવો.
$n$ ધન પદો $x_1, x_2, ……. x _n $ નો સમગુણોત્તર મધ્યક = …….