જો શ્રેણીના પહેલા $n$ પદોનો સરવાળો $An^2 + Bn$ સ્વરૂપમાં હોય જ્યાં $A, B$ એ $n$ ના નિરપેક્ષ અચળ છે, તો ........ શ્રેણી છે.

  • A

    સમાંતર શ્રેણી

  • B

    સમગુણોત્તર શ્રેણી

  • C

    સ્વરિત શ્રેણી

  • D

    આપૈલ પૈકી એકપણ નહિ.

Similar Questions

જો $x=\sum \limits_{n=0}^{\infty} a^{n}, y=\sum\limits_{n=0}^{\infty} b^{n}, z=\sum\limits_{n=0}^{\infty} c^{n}$, જ્યાં $a , b , c$ એ સમાંતર શ્રેણી$(A.P.)$ માં છે. $|a| < 1,|b| < 1,|c| < 1$, $abc$ $\neq 0$ તો:

  • [JEE MAIN 2022]

શ્રેણીઓ $4,9,14,19, \ldots . . .25$ માં પદ સુધી તથા $3,6,9,12, \ldots . . .37$ માં પદ સુધીના સામાન્ય પદોની સંખ્યા . . . . . .. છે.

  • [JEE MAIN 2024]

$3,3^2, 3^3, ......, 3^n$ નો સમગુણોત્તર મધ્યક કયો હશે ?

જો સમીકરણ $a{x^2} + bx + c = 0$ ના બીજનો સરવાળો એ બીજના  વર્ગના વ્યસ્તના સરવાળા બરાબર હોય તો  $b{c^2},\;c{a^2},\;a{b^2}$ એ   . . . .  શ્રેણીમાં છે .

  • [IIT 1976]

જો $S_1, S_2$ અને $S_3$ અનુક્રમે સમાંતર શ્રેણીના પ્રથમ $n_1, n_2$ અને $n_3$ પદોના સરવાળા દર્શાવે તો, $\frac{{{S_1}}}{{{n_1}}}\,({n_2}\, - \,{n_3})\,\, + \,\,\frac{{{S_2}}}{{{n_2}}}\,({n_3}\, - \,{n_1})\,\, + \,\,\frac{{{S_3}}}{{{n_3}}}\,({n_1}\, - \,{n_2})\,\, = ....$